Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 130(8): 1324-1336, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38347095

RESUMO

BACKGROUND: Cyclic nucleotides are critical mediators of cellular signalling in glioblastoma. However, the clinical relevance and mechanisms of regulating cyclic nucleotides in glioblastoma progression and recurrence have yet to be thoroughly explored. METHODS: In silico, mRNA, and protein level analyses identified the primary regulator of cyclic nucleotides in recurrent human glioblastoma. Lentiviral and pharmacological manipulations examined the functional impact of cyclic nucleotide signalling in human glioma cell lines and primary glioblastoma cells. An orthotopic xenograft mice model coupled with aspirin hydrogels verified the in vivo outcome of targeting cyclic nucleotide signalling. RESULTS: Elevated intracellular levels of cGMP, instead of cAMP, due to a lower substrate efflux from ATP-binding cassette sub-family C member 4 (ABCC4) is engaged in the recurrence of glioblastoma. ABCC4 gene expression is negatively associated with recurrence and overall survival outcomes in glioblastoma specimens. ABCC4 loss-of-function activates cGMP-PKG signalling, promoting malignancy in glioblastoma cells and xenografts. Hydrogels loaded with aspirin, inhibiting glioblastoma progression partly by upregulating ABCC4 expressions, augment the efficacy of standard-of-care therapies in orthotopic glioblastoma xenografts. CONCLUSION: ABCC4, repressing the cGMP-PKG signalling pathway, is a tumour suppressor in glioblastoma progression and recurrence. Aspirin hydrogels impede glioblastoma progression through ABCC4 restoration and constitute a viable translational approach.


Assuntos
AMP Cíclico , Glioblastoma , Humanos , Camundongos , Animais , AMP Cíclico/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Recidiva Local de Neoplasia/genética , GMP Cíclico/metabolismo , Nucleotídeos Cíclicos , Aspirina , Hidrogéis , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética
2.
Redox Biol ; 65: 102831, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37572455

RESUMO

Tumor hypoxia promotes malignant progression and therapeutic resistance in glioblastoma partly by increasing the production of hydrogen peroxide (H2O2), a type of reactive oxygen species critical for cell metabolic responses due to its additional role as a second messenger. However, the catabolic pathways that prevent H2O2 overload and subsequent tumor cell damage in hypoxic glioblastoma remain unclear. Herein, we present a hypoxia-coordinated H2O2 regulatory mechanism whereby excess H2O2 in glioblastoma induced by hypoxia is diminished by glutathione peroxidase 1 (GPx1), an antioxidant enzyme detoxifying H2O2, via the binding of hypoxia-inducible factor-1α (HIF-1α) to GPx1 promoter. Depletion of GPx1 results in H2O2 overload and apoptosis in glioblastoma cells, as well as growth inhibition in glioblastoma xenografts. Moreover, tumor hypoxia increases exosomal GPx1 expression, which assists glioblastoma and endothelial cells in countering H2O2 or radiation-induced apoptosis in vitro and in vivo. Clinical data explorations further demonstrate that GPx1 expression was positively correlated with tumor grade and expression of HIF-1α, HIF-1α target genes, and exosomal marker genes; by contrast, it was inversely correlated with the overall survival outcome in human glioblastoma specimens. Our analyses validate that the redox balance of H2O2 within hypoxic glioblastoma is clinically relevant and could be maintained by HIF-1α-promoted or exosome-related GPx1.


Assuntos
Glioblastoma , Glutationa Peroxidase GPX1 , Humanos , Hipóxia Celular , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Glioblastoma/metabolismo , Peróxido de Hidrogênio/metabolismo , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Estresse Oxidativo
3.
Cancer Sci ; 114(1): 174-186, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36106406

RESUMO

Hypoxic tumor microenvironment (HTM) promotes a more aggressive and malignant state in glioblastoma. However, little is known about the role and mechanism of CXC chemokine ligand 14 (CXCL14) in HTM-mediated glioblastoma progression. In this study, we report that CXCL14 expression correlated with poor outcomes, tumor grade, and hypoxia-inducible factor (HIF) expression in patients with glioblastoma. CXCL14 was upregulated in tumor cells within the hypoxic areas of glioblastoma. Hypoxia induced HIF-dependent expression of CXCL14, which promoted glioblastoma tumorigenicity and invasiveness in vitro and in vivo. Moreover, CXCL14 gain-of-function in glioblastoma cells activated insulin-like growth factor-1 receptor (IGF-1R) signal transduction to regulate the growth, invasiveness, and neurosphere formation of glioblastoma. Finally, systemic delivery of CXCL14 siRNA nanoparticles (NPs) with polysorbate 80 coating significantly suppressed tumor growth in vivo and extended the survival time in patient-derived glioblastoma xenografts. Together, these findings suggest that HIF-dependent CXCL14 expression contributes to HTM-promoted glioblastoma tumorigenicity and invasiveness through activation of the IGF-1R signaling pathway. CXCL14 siRNA NPs as an oligonucleotide drug can inhibit glioblastoma progression and constitute a translational path for the clinical treatment of glioblastoma patients.


Assuntos
Glioblastoma , Humanos , Glioblastoma/metabolismo , Quimiocinas CXC/genética , Fator de Crescimento Insulin-Like I , Ligantes , Hipóxia , Transdução de Sinais , RNA Interferente Pequeno , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Cancers (Basel) ; 14(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35804859

RESUMO

Haloperidol is a routine drug for schizophrenia and palliative care of cancer; it also has antitumor effects in several types of cancer. However, the role of haloperidol in endometrial cancer (EC) development is still unclear. Here, we show that chronic haloperidol treatment in clinically relevant doses induced endometrial hyperplasia in normal mice and promoted tumor growth and malignancy in mice with orthotopic EC. The pharmacokinetic study indicated that haloperidol highly accumulated in the uterus of mice. In vitro studies revealed that haloperidol stimulated the cellular transformation of human endometrial epithelial cells (HECCs) and promoted the proliferation, migration, and invasion of human endometrial carcinoma cells (HECCs) by activating nuclear factor kappa B (NF-κB) and its downstream signaling target, colony-stimulating factor 1 (CSF-1). Gain of function of CSF-1 promotes the cellular transformation of HEECs and the malignant progression of HECCs. Moreover, blockade of CSF-1 inhibited haloperidol-promoted EC progression in vitro and in vivo. A population-based cohort study of EC patients further demonstrated that the use of haloperidol was associated with increased EC-specific mortality. Collectively, these findings indicate that clinical use of haloperidol could potentially be harmful to female patients with EC.

5.
J Cell Mol Med ; 23(11): 7417-7426, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31557413

RESUMO

CYP19A1/aromatase (Ar) is a prognostic biomarker of gastric cancer (GCa). Ar is a critical enzyme for converting androstenedione to oestradiol in the steroidogenesis cascade. For decades, Ar has been targeted with Ar inhibitors (ARIs) in gynaecologic malignancies; however, it is unexplored in GCa. A single-cohort tissue microarray examination was conducted to study the association between Ar expression and disease outcome in Asian patients with GCa. The results revealed that Ar was a prognostic promoter. Bioinformatics analyses conducted on a Caucasian-based cDNA microarray databank showed Ar to be positively associated with GCa prognosis for multiple clinical modalities, including surgery, 5-Fluorouracil (5-FU) for adjuvant chemotherapy, or HER2 positivity. These findings imply that targeting Ar expression exhibits a potential for fulfilling unmet medical needs. Hence, Ar-targeting compounds were tested, and the results showed that exemestane exhibited superior cancer-suppressing efficacy to other ARIs. In addition, exemestane down-regulated Ar expression. Ablating Ar abundance with short hairpin (sh)Ar could also suppress GCa cell growth, and adding 5-FU could facilitate this effect. Notably, adding oestradiol could not prevent exemestane or shAr effects, implicating a nonenzymatic mechanism of Ar in cancer growth. Regarding translational research, treatment with exemestane alone exhibited tumour suppression efficacy in a dose-dependent manner. Combining subminimal doses of 5-FU and exemestane exerted an excellent tumour suppression effect without influencing bodyweight. This study validated the therapeutic potentials of exemestane in GCa. Combination of metronomic 5-FU and exemestane for GCa therapy is recommended.


Assuntos
Androstadienos/uso terapêutico , Antineoplásicos/uso terapêutico , Inibidores da Aromatase/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Fluoruracila/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Receptores de Estrogênio/metabolismo , Neoplasias Gástricas/metabolismo
6.
Theranostics ; 8(17): 4781-4794, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30279737

RESUMO

Rationale: Although molecular investigations of regulator of G-protein signaling 4 (RGS4) alterations in schizophrenia patients yielded partially inconsistent findings, the previous studies suggested that RGS4 is both a positional and functional candidate gene for schizophrenia and is significantly decreased in the prefrontal cortex. However, the exact role of RGS4 in the pathophysiology of schizophrenia is unclear. Moreover, a whole genome transcription profile study showed the possibility of RGS4-regulated expression of SLC7A11(xCT), a component of cysteine/glutamate transporter or system xc-. We hypothesized that system xc- is a therapeutic target of RGS4 deficit-mediated schizophrenia. Methods: Pharmacological and genetic manipulation of RGS4 in organotypic brain slice cultures were used as an ex vivo model to investigate its role in system xc- and glutamatergic function. Lentiviral-based mouse models with RGS4 deficit in the prefrontal cortex and treatment with system xc- activator, N-acetyl cysteine (NAC), were utilized to observe their impacts on glutamatergic function and schizophrenic behaviors. Results: Genetic and pharmacological inhibition of RGS4 resulted in a significant decrease in SLC7A11 (xCT) expression and hypofunction of system xc- and reduced glutamatergic function in organotypic brain slice cultures. However, NAC restored the dysregulation of RGS4-mediated functional deficits of glutamate. Moreover, knockdown of RGS4 specifically in the prefrontal cortex caused mice to exhibit behaviors related to schizophrenia such as increased stereotypy, impaired prepulse inhibition, deficits in social interactions, working memory, and nesting behavior, while enhancing sensitivity to the locomotor stimulatory effect of MK-801. These mice displayed glutamatergic dysfunction in the prefrontal cortex, which may have contributed to the behavioral deficits. RGS4 knockdown mice that received NAC treatment had improved glutamatergic dysfunction and schizophrenia behaviors. Conclusion: Our results suggest that RGS4 deficit induces dysregulation and dysfunction of system xc-, which further results in functional deficits of the glutamatergic system and subsequently to schizophrenia-related behavioral phenotypes. Activation of system xc- offers a promising strategy to treat RGS4 deficit-mediated schizophrenia.


Assuntos
Sistema y+ de Transporte de Aminoácidos/biossíntese , Regulação da Expressão Gênica , Córtex Pré-Frontal/fisiopatologia , Proteínas RGS/metabolismo , Esquizofrenia/fisiopatologia , Acetilcisteína/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Camundongos , Técnicas de Cultura de Órgãos , Proteínas RGS/genética
7.
Cancer Med ; 7(8): 3743-3754, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29923327

RESUMO

Sphingosine-1-phosphate (S1P) is a bioactive lipid that exerts various pathophysiological functions through binding to its receptor family (S1PRs). Since first report of the breast cancer (BCA) promoting function by S1P production (through the function of sphingosine kinases) and S1P/S1PR signaling, their antagonists have never been successfully progress to clinics after three decades. Taking advantage of bioinformatics linking to gene expression to disease prognosis, we examined the impact of associated genes in BCA patients. We found high gene expressions involved in S1P anabolism suppressed disease progression of patients who are basal cell type BCA or receiving adjuvant therapy. In addition, S1PRs expression also suppressed disease progress of multiple categories of BCA patient progression. This result is contradictory to tumor promoter role of S1P/S1PRs which revealed in the literature. Further examination by directly adding S1P in BCA cells found a cell growth suppression function, which act via the expression of S1PR1. In conclusion, our study is the first evidence claiming a survival benefit function of S1P/S1PR signaling in BCA patients, which might explain the obstacle of relative antagonist apply in clinics.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Lisofosfolipídeos/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Metabolismo dos Lipídeos , Modelos Biológicos , Prognóstico , Receptores de Lisoesfingolipídeo/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato
8.
Oncotarget ; 7(29): 46448-46465, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27340775

RESUMO

PURPOSE: Although hepatectomy and liver transplantation surgery for hepatocellular carcinoma (HCC) are effective treatment modalities, the risk of recurrence remains high, particularly in patients with a high number of circulating tumor cells (CTCs) expressing cancer stem/progenitor cell markers. Androgen receptor (AR) signaling has been shown to suppress HCC metastasis in rodent models of HCC. In this study, we investigated whether AR is associated with postoperative HCC recurrence. EXPERIMENTAL DESIGN: CTCs were obtained from patients with HCC who had undergone hepatectomy to investigate whether they are associated with disease outcome. AR knockout was introduced in two mouse models of spontaneous HCC (carcinogen- and hepatitis B virus-related HCC) to delineate the role that AR plays in HCC recurrence. Biological systems analysis was used to investigate the cellular and molecular mechanisms. RESULTS: We found that the expression of AR in CTCs was negatively associated with HCC recurrence/progression after hepatectomy. Our results suggest that AR-mediated suppression of HCC recurrence/progression is governed by a three-pronged mechanism. First, AR suppresses the expression of CD90 in CTCs by upregulating Histone 3H2A. Second, AR suppresses cell migration at the transcriptome level. Third, AR promotes anoikis of CTCs via dysregulation of cytoskeletal adsorption. CONCLUSIONS: The results indicate that AR expression may be the gatekeeper of postoperative HCC recurrence. Therefore, targeting AR in presurgical down-staging procedures may serve as a secondary prevention measure against HCC recurrence in the future.


Assuntos
Anoikis/fisiologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Células Neoplásicas Circulantes/patologia , Receptores Androgênicos/metabolismo , Animais , Movimento Celular/fisiologia , Progressão da Doença , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Recidiva Local de Neoplasia/patologia , Células Neoplásicas Circulantes/metabolismo , Antígenos Thy-1/metabolismo
9.
Radiology ; 261(3): 744-51, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21878616

RESUMO

PURPOSE: To investigate the fluctuation of fibroglandular tissue volume (FV) and percentage of breast density (PD) during the menstrual cycle and compare with postmenopausal women by using three-dimensional magnetic resonance (MR)-based segmentation methods. MATERIALS AND METHODS: This study was approved by the Institutional Review Board and was HIPAA compliant. Written informed consent was obtained. Thirty healthy female subjects, 24 premenopausal and six postmenopausal, were recruited. All subjects underwent MR imaging examination each week for 4 consecutive weeks. The breast volume (BV), FV, and PD were measured by two operators to evaluate interoperator variation. The fluctuation of each parameter measured over the course of the four examinations was evaluated on the basis of the coefficient of variation (CV). RESULTS: The results from two operators showed a high Pearson correlation for BV (R(2) = 0.99), FV (R(2) = 0.98), and PD (R(2) = 0.96). The interoperator variation was 3% for BV and around 5%-6% for FV and PD. In the respective premenopausal and postmenopausal groups, the mean CV was 5.0% and 5.6% for BV, 7.6% and 4.2% for FV, and 7.1% and 6.0% for PD. The difference between premenopausal and postmenopausal groups was not significant (all P values > .05). CONCLUSION: The fluctuation of breast density measured at MR imaging during a menstrual cycle was around 7%. The results may help the design and interpretation of future studies by using the change of breast density as a surrogate marker to evaluate the efficacy of hormone-modifying drugs for cancer treatment or cancer prevention.


Assuntos
Mama/anatomia & histologia , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Ciclo Menstrual/fisiologia , Adulto , Algoritmos , Mama/fisiologia , Feminino , Humanos , Pessoa de Meia-Idade , Pós-Menopausa/fisiologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...